Hypocotyl Transcriptome Reveals Auxin Regulation of Growth-Promoting Genes through GA-Dependent and -Independent Pathways

نویسندگان

  • Elisabeth J. Chapman
  • Kathleen Greenham
  • Cristina Castillejo
  • Ryan Sartor
  • Agniezska Bialy
  • Tai-ping Sun
  • Mark Estelle
چکیده

Many processes critical to plant growth and development are regulated by the hormone auxin. Auxin responses are initiated through activation of a transcriptional response mediated by the TIR1/AFB family of F-box protein auxin receptors as well as the AUX/IAA and ARF families of transcriptional regulators. However, there is little information on how auxin regulates a specific cellular response. To begin to address this question, we have focused on auxin regulation of cell expansion in the Arabidopsis hypocotyl. We show that auxin-mediated hypocotyl elongation is dependent upon the TIR1/AFB family of auxin receptors and degradation of AUX/IAA repressors. We also use microarray studies of elongating hypocotyls to show that a number of growth-associated processes are activated by auxin including gibberellin biosynthesis, cell wall reorganization and biogenesis, and others. Our studies indicate that GA biosynthesis is required for normal response to auxin in the hypocotyl but that the overall transcriptional auxin output consists of PIF-dependent and -independent genes. We propose that auxin acts independently from and interdependently with PIF and GA pathways to regulate expression of growth-associated genes in cell expansion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis.

Plants exhibit daily rhythms in their growth, providing an ideal system for the study of interactions between environmental stimuli such as light and internal regulators such as the circadian clock. We previously found that two basic loop-helix-loop transcription factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, integrate light and circadian clock signaling to generate rhythmic plant gr...

متن کامل

Transcriptome Profiling Reveals the Regulatory Mechanism Underlying Pollination Dependent and Parthenocarpic Fruit Set Mainly Mediated by Auxin and Gibberellin

BACKGROUND Fruit set is a key process for crop production in tomato which occurs after successful pollination and fertilization naturally. However, parthenocarpic fruit development can be uncoupled from fertilization triggered by exogenous auxin or gibberellins (GAs). Global transcriptome knowledge during fruit initiation would help to characterize the molecular mechanisms by which these two ho...

متن کامل

Transcriptome Analyses Reveal the Involvement of Both C and N Termini of Cryptochrome 1 in Its Regulation of Phytohormone-Responsive Gene Expression in Arabidopsis

Cryptochromes (CRY) are blue-light photoreceptors that mediate various light responses in plants and animals. It has long been demonstrated that Arabidopsis CRY (CRY1 and CRY2) C termini (CCT1 and CCT2) mediate light signaling through direct interaction with COP1. Most recently, CRY1 N terminus (CNT1) has been found to be involved in CRY1 signaling independent of CCT1, and implicated in the inh...

متن کامل

Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis.

The transition from etiolated to green seedlings involves a shift from hypocotyl growth-promoting conditions to growth restraint. These changes occur through a complex light-driven process involving multiple and tightly coordinated hormonal signaling pathways. Nitric oxide (NO) has been lately characterized as a regulator of plant development interacting with hormone signaling. Here, we show th...

متن کامل

Auxin and Gibberellins Are Required for the Receptor-Like Kinase ERECTA Regulated Hypocotyl Elongation in Shade Avoidance in Arabidopsis

Plants use shade avoidance strategy to escape the canopy shade when grown under natural conditions. Previous studies showed that the Arabidopsis receptor-like kinase ERECTA (ER) is involved in shade avoidance syndrome. However, the mechanisms of ER in modulating SAR by promoting hypocotyl elongation are unknown yet. Here, we report that ER regulated hypocotyl elongation in shade avoidance requi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012